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In order to sketch the history of multivariate data analysis, we must return to the last 

decades of the nineteenth century, when the concept of correlation was first 

developed.  Correlation is a measure of association between two observed variables, 

such as between body stature and body weight, between level of education and 

general mental ability, between level of income and political preference, etc.  It 

expresses how much of the variation in two observations (or measurements) is 

common.  Correlation does not determine how much of the variation in one 

observation is caused by the variation in another, or vice versa.  Correlation does not 

specify the direction from cause to effect.  There even may be no direct cause-effect 

relationship between two correlated variables.  It may well be, for example, that body 

stature and body weight both depend to some extent on the level of functioning of 

endocrinal glands (e.g., the thyroid), that level of education and mental ability are 

both to some degree conditioned by one's family, which in turn is determined in part 

by the level of education and by the abilities of its members.   

 

7.1  (Lambert) Adolphe Quetelet (1796-1874) and the error curve 

 

From the time of Auguste Comte [1], nineteenth century sociologists envied the exact 

scientists for their use of deterministic cause-effect relationships.  The latter provide 

a mathematical description of the observed phenomena which allows one to make 

predictions and emit hypotheses which subsequently can be tested in further 

experiments.  For example, when a body of mass  m  is submitted to a force  F  it is 

accelerated by an amount  a  according to Newton's law  F = ma .  This law can be 

tested repetitively in the laboratories, for example, by spinning a mass around and by 

measurement of the resulting centrifugal force under carefully controlled conditions.  

These would account for all possible sources of interference, arising from unequal 

distribution of the mass, from nonlinearity of the velocity and force sensors, etc. 
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In sociology and psychology no such deterministic laws had been found.  

Furthermore, their study often addresses the functioning and behavior of individuals  

or groups in their natural environment of which they are an interactive part.  Around 

the time of the foundation of positivist philosophy, Adolphe Quetelet introduced his 

idea of a 'social physics' based on probability laws.  This Belgian astronomer 

acquainted himself during a brief stay in Paris with the statistical work of Pierre 

Simon de Laplace.  In particular, he tried to apply Laplace's ratio method for the 

purpose of estimating the number of inhabitants in Belgium.  (The ratio method 

required the determination of the birth or death rate in a few selected areas and 

proposed to estimate the size of the whole population from the observed rate and 

from the total number of registered births or deaths in the country.)   

 

After severe criticism of the  ratio method by de Keverberg, who pointed to the many 

sources of inhomogeneity in various regions, Quetelet abandoned the idea.  He 

remained fascinated, however, by the remarkable regularities that emerged from 

large collections of demographic data.  Quetelet is now remembered mostly for his 

practice of fitting curves to data presented in the form of histograms, such as the 

heights and chest widths of army conscripts.  He remarked that these curves strongly 

resembled to what was then known as the error curve (and which is now referred to 

as the normal probability density curve or Gaussian curve).  These curves are 

symmetric with respect to the central mode which represents the average or mean 

value of the tabulated data.  Quetelet concluded that, although there exists an infinite 

number of influences which are the cause of an individual  observation, the average 

of a large number of them can be regarded as a constant.  In his view, individual 

observations were scattered around the mean in the same way as repeated 

astronomical observations tend to err in a predictable way around its true value.   
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At last, sociologists got their hands upon observable quantities and a law that 

governed their manifestation, although the latter possessed a probabilistic, rather 

than a deterministic nature.  In Quetelet's view, the manifestation of the error curve in 

a property of a group of individuals bore evidence that similar causes where 

operational on all the individuals of the group.  Whenever there appeared a shift in 

the average value or in the shape of the curve this was then attributed to the 

influence of new or extraneous causes.  However crude, Quetelet's approach had a 

great influence on the development of statistics, especially in England after the 

translation of his work on social physics in 1842, which originally had appeared in 

French [2].  Florence Nightingale was one of his great admirers and exerted her 

influence in academic circles to promote Quetelet's statistical method in England[3].   
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Notes on Quetelet 

 

 
[1]  Auguste Comte, Cours de Philosophie positive.  Baillière, Paris, 1839. 
Comte is the founder of positivist philosophy. 
 
[2]  (Lambert) Adolphe Quetelet, Sur l'Homme et le Développement de ses Facultés, 
ou Essai de Physique sociale.  Bachelier, Paris, 1835. 
An English translation appeared in 1842, which promoted Quetelet's statistical ideas 
in England during the second half of the nineteenth century : Adolphe Quetelet, A 
Treatise on Man and the Development of his Faculties.  Chambers, Edinburgh, 1842.  
See also the chapter on F. Nightingale in this book. 
 
[3] A detailed historical account of the statistical work of Quetelet is found in :  
Stephen M. Stigler, The History of Statistics.  The Measurement of Uncertainty 
before 1900.  The Belknap Press of Harvard Univ., Cambridge, Mass., 1986. 
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Biographical Notes on Quetelet (1796-1874) 
 

 
---- Studies of mathematics at the University of Gent. 
 
1823 Three-months visit to Paris, studies with Fourier and Laplace, as part 

of a project for a new observatory. 
 
1824 Application of Laplace's ratio method for the indirect estimation of 

the size of a population from the birth and death rates in selected 
regions. 

 
1835 Social physics.  Elaboration of the concept of an Average Man and 

the practice of fitting normal curves to categorized data. 
 
1842 Translation into English of his work on social physics ('A Treatise on 

Man and the Development of his Faculties.') 
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7. 2  Francis Galton (1822-1911) and correlation 

 

7.2.1  Life and work of Galton 

One of the scholars who were receptive to the ideas of Quetelet in England, was 

Francis Galton.  His concept of regression and correlation in the study of inheritable 

properties was a great contribution to statistical thinking.  Galton was an intellectually 

precocious child with an estimated IQ of the order of 200 .  He studied mathematics 

and medicine at Cambridge.  After his (unfinished) studies he earned a distinction 

from the National Geographical Society as an explorer of South-West Africa.  The 

fortune he inherited allowed Galton to pursue his intellectual interests as a 

'gentleman scientist'.  According to his biographer [1], he combined an endless 

curiosity about the phenomena of nature with mechanical ingenuity and 

inventiveness.  He designed a meteorological chart and investigated the 

effectiveness of prayer.  In the last part of his active life he also developed a system 

of classification of individuals on the basis of fingerprints.   

 

His main contribution, however, resulted from an extensive study of heredity, and for 

this, he is still best remembered today.  Galton possessed a broad outlook and at the 

same time he was endowed with a profound sense for subtle detail, which  seems to 

be the right stuff of which great scientists are made [1]. 

Galton made effective use of visual and graphical displays for the forging of his ideas 

and observations into a coherent system.  The quincunx and the diagram of mid-

parental and filial heights certainly meant more than a mere illustration of ideas 

already worked out.  They developed along with the progression of thought, as 

instruments in the hands of a skilful and persistent investigator.   

His studies of heredity led Galton to coin the term 'eugenics'.  He was convinced 

that : 'A eugenic program to foster talent and healthiness and to suppress stupidity 
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and sickliness was a sine qua non in any society that wished to maintain, let alone 

promote, its quality and status.'  In this he was opposed by those who believed that 

nurture-not-nature contributed to improvement of talent and health.  He was also 

critisized by the Mendelians who maintained that inherited traits are transmitted by 

particles [2, 3].  When Galton died in 1911, he endowed by his will a chair of 

eugenics at London's University College, with the expressed wish that it should be 

offered to his friend Karl Pearson, who had championed and extended his ideas. 

 

7.2.2  Regression to the mean  

While many people stood in awe for the remarkable stability of the distributions of 

inheritable traits (such as body stature) from one generation to another, this was a 

great concern to Galton.  In his view, if a physical characteristic or mental ability is 

transmitted across generations then one would expect the spread of the 

observations around their mean value to become broader and broader (while the 

mean value itself remains constant).  The spreads around the mean were found to 

be remarkably constant, however, in the absence of external causes, as had already 

been demonstrated by Quetelet.  This precisely was Galton's concern.  To make his 

point, he designed a mechanical device which consisted of a board with about 20 

rows of pins arranged in the form of a triangle (in the same way as numbers are 

arranged in Pascal's triangle).  Small lead pellets (obtained from the shot in a 

hunter's cartridge) could be directed through a funnel to fall upon the apex of the 

triangle.  The pellets ricocheted on the pins and through gravity collected at the base 

of the triangle where they piled neatly one upon another in the way of the error curve.  

This device, called 'quincunx' by Galton, simulates the transmission of an inheritable 

trait which in the first generation is highly concentrated (the loading of shot at the 

apex) and which becomes more and more diluted after each generation through the 

effect of random events (which force a pellet to bounce off from a pin either to the left 

or to the right).  Theoretically, after an infinitely large number of generations (rows of 
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pins in the quincunx) the spread of the distribution also becomes infinitely large.  Yet, 

in reality, the spread of the distribution of inheritable traits around their mean value 

appears to be remarkably constant.  In terms of his statistical simulation, Galton 

postulated a mechanism which tended to counteract the progressive broadening of 

the flow of pellets, such as to revert them again within narrow bounds around the 

mean.  He called this principle reversion or regression toward mediocrity.  

(Nowadays this effect is referred to as regression to the mean.) 

We briefly describe three ways in which Galton investigated his problem, each more 

sophisticated than the other.   

 

7.2.3  The regression of famousness in 100 families 

In an early study of inheritance, he investigated 100 families, each of which had a 

very eminent or famous member.  (The study only addressed the male kinship.)  He 

counted the number of famous fathers, sons, grandfathers, grandsons, etc. in these 

100 families.  It was found that the number of famous persons decreased by about a 

factor four by each generation upward or downward from the most famous member 

[4].  In particular,  1/4 th is inherited from each parent,  1/16 th from each 

grandparent, etcetera, the sum over all ascendants being equal to one.  Galton 

concluded that although talent seems to run in families, there also appeared a 

regression toward mediocrity.  

 

7.2.4  The regression of size of seed in sweat peas  

In order to obtain further evidence for this hypothesis, Galton designed an 

experiment with sweet peas [5,6].  He obtained sets of seven batches of increasing 

diameter, each composed of ten seeds with more or less identical diameters.  He 

distributed the sets of parental seeds to his friends with detailed instructions for 

sowing and harvesting of the offspring.  The results of his experiment are reproduced 
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in Table 7.2.1  in which the seven batches are labeled from  K  to  Q  in decreasing 

order of the parental diameter.   

 

 
Table 7.2.1  Diameters (in .01 inches) of parental and filial (first generation) seeds 
in Galton's 1877 experiment with sweet peas.  Each of the seven batches of 
parental seeds contained  10  seeds of almost identical size.  According to Galton's 
analysis the average deviation of the filial diameters from the common mean of 
15.5 is about one third of the average deviation of the parental diameter from the 
same mean.  This phenomenon was interpreted as a regression towards the mean 
[7]. 

 

Galton found his law of regression confirmed in the seeds of the first generation 

progeny.  After smoothing the data he determined a common mean at 15.5 

(hundredths of an inch).  Parental seeds of this size gave an offspring with the same 

mean diameter of 15.5 .  Parental seeds that deviated positively from 15.5 produced 

progeny whose deviation from the common mean of 15.5 was reduced to a fixed 

proportion of the parental deviation, as can be seen from the following calculations : 

 
17.3 −  15.5
21.0 −  15.5

 =  0.327

16.3 −  15.5
18.0 −  15.5

 =  0.320

 

 

Galton concluded from this result that the regression ratio between two generations 

- 10 - 



must be equal to  1/3 .  The only disappointing fact was that the regression worked 

only well for the larger seeds but barely showed in the smaller ones.  Here Galton 

remarked that 'the smaller parent seeds were such a miserable set that I could hardly 

deal with them.  Moreover, they were very infertile' [7]. 

 

7.2.5 The regression of height in 200 families 

The experiment with sweet peas described above has been designed as a stratified 

experiment.  This means that from the outset each category of diameter contained 

an equal number of seeds.  Therefore, it was not possible from this experiment to 

establish a law between the spread of the parental distribution of diameters and that 

of the first generation offspring.  It merely confirmed (partially) the hypothesis of 

regression to mediocrity and it yielded an estimate of the rate of regression.  For this 

reason, Galton undertook a new study in which he addressed a general population.  

He obtained data of stature (body height) on 205 parents and on 928 of their adult 

children.  Galton choose body height as his object of inquiry because it is the sum of 

about  50  individual bones, numerous cartilages interposed between the bones and 

the fleshy parts of scalp and soles [7].  

 

 It was assumed that the transmission of stature from one generation to the next 

depended only on the height of the parents.  The distribution of height was known to 

be stable and its measurement easily obtained.  In a first step of preprocessing, 

heights of female parents and children were multiplied by a constant of  1.08  in 

order to make male and female heights comparable.  Next, mid-parent heights were 

computed by averaging the heights of both parents.  This allowed to crosstabulate 

the data for different categories of mid-parent height and adult children (or filial) 

height (Table 7.2.2).   
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Table 7.2.2  Crosstabulation of  928  adult children of various statures (heights) born of  205  
parents of various statures.  The mid-parent height is the average of the male and female 
heights.  All female heights have been multiplied by  1.08 in order to make them 
commensurable with the male heights[7]. 

 

Finally, the data were smoothed and retabulated as shown in Fig.7.2.1 [8].  A highly 

remarkable feature of this figure is that it can be read at the same time as a table and 

as a bivariate diagram.  When viewed as a diagram, the vertical and horizontal 

scales indicate the height of mid-parents and adult children, as well as their 

deviations from the median.  The latter was determined to be equal to 68.25 inches 

in the two populations, as expected.  The spread of the mid-parent heights is smaller 

by a factor of  2   than the spread of the adult children heights, again as expected 

[9].  These spreads amount to  1.22  and  1.70  inches respectively.  
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Figure 7.2.1  Smoothed, scaled and adjusted data obtained by Galton from the 
original Table 7.2.2.  The data is crosstabulated by mid-parent height and by 
adult children height.  At the same time they can be read as a bivariate diagram 
in which the coordinate axes represent deviates from the median height (which 
is equal to  68.25  inches for both mid-parents and adult children.  The elliptic 
contour has been fitted to points of equal magnitude (close to a value of  4 ).  
The locus of horizontal tangential points  ON  estimates the probable filial 
height from a given mid-parental height.  The tangent of this line with the 
vertical axis represents the rate of regression which was found to be equal to  
2/3 [7]. 

 

On Figure 7.2.1 Galton fitted lines through points of equal magnitude much in the 

way as is done with isotherms and isobars on a geographic map.  It was found that 

these equidensity contours formed concentric and symmetric ellipses.  The center  O  

of the ellipses coincided with the common mean of the mid-parent and filial 

distribution.  Galton also indicated the two loci of vertical and horizontal tangential 

points.  (Here, the locus is the collection of tangential points that can be drawn on all 

possible concentric and similar ellipses.  In theory, only one ellipse needs to be 

considered, however, since the locus is a straight line through the origin.)  The 

former is defined by the line  OM  passing through the origin  O  and through the 

vertical tangential point  M.  The latter is obtained by the line  ON  passing through  

O  and the horizontal tangential point  N.  The line  OM  was fitted by Galton such as 
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to run through the maximal values of each column of the figure.  The line  ON  was 

fitted such as to fit to the maximal values of the rows. 

 

 
Table 7.2.3  Descriptive statistics of Galton's data on parental and filial heights [7,9]. 

 

In a way, one could say that the locus of vertical tangential points defines the most 

probable midparent-height for a given adult children height.  Similarly, the locus of 

horizontal tangential points prescribes the most probable adult children height for a 

given mid-parent height [10].  Galton found that the tangents of the angles subtended 

by the loci and the most proximate coordinate axes are  1/3  and  2/3 , respectively. 

The latter finding was of utmost importance, as it represented the rate of regression 

of height from one generation to another, so eagerly sought after by Galton.  This 

indicated that the probable deviation from the mean (on either side) of the offspring 

was  2/3  of the deviation from the mean of the mid-parent height.  Returning to the 

original problem, Galton devised a simple formula which related the rate of 

regression  v  , the constant spread of heights across all generations  p , and the 

spread  f  produced by hereditary transmission at each generation (i.e., the widening 

of the pellet flow in the quincunx) : 

 

v2 p2

2
 +  f2 =  p2 
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For every observed  v  and  p , one could thus compute the unknown  f  .  For 

example, in the case when  v = 2/3  and  p = 1.70  one finds that  f = 1.50 [7]. 

 

7.2.6  A definition of correlation 

A few years after the publication of the stature data, Galton realized that the two 

coefficients of regression became identical when both the mid-parental and children 

data were scaled to have the same spread.  He then realized that the relationship 

between the two variables could be summarized by means of a single coefficient 

which he initially called co-relation, but later changed to the now familial term of 

correlation [11].  He proposed the symbol  r , possibly referring to his concepts of 

reversion or regression toward mediocrity.  Galton pointed toward the correlation as 

a consequence of the variation of two organisms which is partly due to common 

causes and he predicted its application to many diverse fields of investigation.  The 

significance of this finding for the development of the human sciences is invaluable.  

It diverted the interest in cause-effect relationships towards the search for common 

causes of variation among correlated measurements.  This heralded the advent of 

factor analysis, which Galton could not have foreseen.  His interest shifted to other 

interests, such as the classification of fingerprints, while he left the statistical 

consequences of his discovery to his more mathematically oriented successors. 
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Figure 7.2.2  Bivariate normal distribution fitted to Galton's data on 
parental (x) and filial (y) heights, as reported in Table 7.2.2 [7]. 
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Notes on Galton 

 

 
[1] A detailed historical account of the statistical work of Galton is found in :  
Stephen M. Stigler, The History of Statistics.  The Measurement of Uncertainty 
before 1900.  The Belknap Press of Harvard Univ., Cambridge, Mass., 1986. 
 
[2] Galton must have been aware of the work of his first cousin Charles Darwin, 
whose book 'On the origin of species by natural selection' appeared in 1859 (more 
than twenty years after the return from his voyage on the Beagle to the Galapagos).  
Darwin's book 'On the descent of man' appeared in 1871.  Galton dismissed the idea 
of evolution, however, as being irrelevant to the study of heredity (in Regression 
towards mediocrity.  Opus cit., 1885).  He probably was also unaware of the results 
obtained by Gregor Mendel at Brünn in 1856 from genetic experiments with peas.  
Mendel's work was published in an obscure Austrian Journal and was only 
rediscovered by Hugo de Vries in 1900.  Modern developments have made obsolete 
the practical results of Galton's research.  Nevertheless, his statistical-graphical 
approach is still as valid today as it was in his own time. 
 
[3] Norman T. Gridgeman, Francis Galton, Dictionary of scientific Biography.  
(Charles C. Gillispie, Ed.), Vol. 6, Ch. Scribner's Sons, New York, 1972,  pp. 265-
267. The particles that are inherited according to Mendel's particulate theory of 
heredity are now referred to as genes.  It seems that Galton had played with the idea 
of latent and patent characteristics, which corresponds with our modern concepts of 
genotype and phenotype. 
 
[4] Francis Galton, Hereditary Genius : An Inquiry into its Laws and Consequences.  
Macmillan, London, 1869. 
 
[5] Gustav Hegi, Illustrierte Flora von Mitteleuropa.  Band IV, 3. Teil, Dicotyledones.  
2. Teil, Leguminosae - Tropaelauae.  Paul Parey, Berlin, ................, 1975.  Sweet 
peas (Lathyrus odoratus) reproduce by self-fertilization, i.e., by fusion of two haploid 
cells (which each contain a single genome). 
 
[6] Francis Galton, Typical laws of heredity, Nature 15, 512-514, 1877.   
The results of the experiments on sweet peas were also presented in the appendix 
of Galton's 1885 report of his analysis of the parental and filial heights of people. 
 
[7] Francis Galton, Regression towards mediocrity in hereditary stature.  J. 
Anthropological Institute, 15, 246-263, 1885.  The experiment on sweet peas is 
described in the appendix.  The main content of the paper deals with the analysis of 
the parental and filial body statures.  The table of body statures contains a few 
suspicious entries.  For example, the first row shows 4 adult children resulting from 5 
couples within the smallest category of mid-parent height.  (At least one parent 
couple did not raise an adult child.)  The last row exhibits 14 adult children, 
apparently from the same couple with the largest mid-parent height.  If one works out 
the ratio between the number of children and the number of couples, an inverse 
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trend is found between this ratio and the mid-parent height.  The coefficient of 
correlation between the categorized mid-parental height and the number of adult 
children per parent pair equals  -0.63 , which is significant at the 5 percent level of 
probability (p=.04).  This suggests a bias in Galton's data such that taller parents 
tended to produce fewer off-spring.  The bias may be artificial, however, as a result 
from the two discrepancies mentioned above. 
 
[8] Francis Galton.  Opus cit. , 1885.  
The smoothed data was obtained from the original table.  The smoothed value at the 
intersection of each row and column was first determined as the sum of the adjacent 
values.  The result was then rescaled, rounded and adjusted such as to produce 
smooth progressions both in the horizontal and vertical directions of the table.  Note 
that there is a likely error in the number at the intersection of the row at  1.5  
deviations and the column at  0.5  deviations.  The number should be between  10  
and  12 .  The error is perhaps made by the lithographer. 
The graphical presentation of the data by Galton has been referred to as a data-
based grid : 
Edward R. Tufte, The visual Display of quantitative Information.  Graphics Press, 
Cheshire, Conn., 1993, p.145. 
 
[9] Galton used the deviations of the 25th percentile from the median (or the so-
called 'probable error') as a measure of spread.  This measure of spread is also 
called the semi-interquartile range.  (The term 'standard deviation' still had to be 
defined by K. Pearson in 1893.)  The descriptive statistics of parental and filial 
heights (Table 7.2.2) are presented in Table 7.2.3. 
None of the measures for skewness and kurtosis reach statistical significance at the 
5 percent level of probability.  Hence, the stature data can be regarded as being 
normally distributed.  The analysis was performed by means of : 
SAS (Version 6.08) PROC UNIVARIATE, Statistical Analysis System.  SAS Institute 
Inc., Cary, NC, 1985. 
 
Under the assumption that the probable error  p  of the distribution of heights is the 
same in both individual parents and in their offspring, Galton derived the probable 
error  pm  for the mid-parent height as : 
 

 pm
2  =  

1
4

p2 + p2( ) =  
p2

2
         and hence :        pm =  p 2  

 
[10] In modern terms, one would now state that Galton had fitted a bivariate normal 
probability surface (or normal correlation surface) to the smoothed data.  The 
equidensity contours of the distribution are the ellipses in the diagram.  Under these 
conditions one can regard the loci of the tangential points as the least squares 
regression lines.  Hence the rates of regression are the slopes of the regression 
lines.  Nowadays we use the term regression for the process of fitting a function to 
observed data in order to make predictions of a dependent variable from one (or 
more) independent variables.  The original meaning of the term in the context of 
hereditary regression toward mediocrity has been lost. 
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[11] Francis Galton, Co-relations and their measurement, chiefly from 
anthropological data.  Proceedings of the Royal Society of London, 45, 135-145, 
1888. 
Francis Galton, Kinship and correlation.  North American Review, 150, 419-431, 
1890. 
 
The story is admirably told by : Stephen Stigler.  Opus cit., pp. 297-299. 
The coefficient of correlation was also referred to as Galton's function.  It was shown 
afterwards that the correlation is equal to the square root of the product of the two 
regression coefficients.  In the case of Galton's stature data this leads to a value of  
(2/9)1/2  or  0.471 . 
 
It is possible to determine the coefficient of correlation directly from the regression 
diagram even when the two scales do not have equal spread.  For example, in 
Fig.7.2.1  the correlation coefficient is equal to the ratio of  XM  to  OY  or 
equivalently to the ratio of  YN  to  OX .  This property has been discovered by my 
colleague, Ludo Gypen, at the Janssen Research Foundation.  There are  13  other 
ways of determining the correlation coefficient from experimental data, but this is by 
far the most simple and elegant way : 
Joseph L. Rodgers and W. Alan Nicewander, Thirteen ways to look at the correlation 
coefficient.  The Am. Statist., 42, 59-66, 1988. 
Ludo Gypen, Comment on Rodgers and Nicewander.  The Am. Statist., 42, 291, 
1988. 
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Biographical Notes on Galton (1822-1911) 
 

 
---- Studies of medicine.  Design of a meteorological chart.  Takes part 

in anthropological expeditions in Africa. 
 
1869 Study of inheritance of eminence in families. 
 

Formulation of the concept of regression towards mediocrity. 
1877 Study of regression (or reversion) of hereditary traits in seeds of 

sweet peas. 
 
1885 Study of regression in anthropological measurements (stature).  

Publication of a normal correlation surface for the average heights of 
parents and that of their adult children. 

\ 
1888 Definition of the term co-relation, which he changed later into 

correlation. 
 
1889 'Natural Inheritance', a synthesis of his ideas and observations on 

transmission of hereditary traits. 
Classification of fingerprints. 
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7.3  Karl Pearson (1857-1936) and the mathematical definition of correlation. 

 

7.3.1  Life and work of Pearson 

The long and tortuous road from causal relationships to correlations led from 

Quetelet, via Galton to Karl Pearson and thus prepared the way for factor analysis 

which is the search for common causes of correlated phenomena.  Quetelet was the 

first to apply statistical methods to demographic and sociological data.  He found 

that, although individual behavior is subjected to random events, populations or large 

samples as a whole show remarkable regularity.  This led him to believe that the 

appearance of a normal distribution in classified data was proof of common and 

constant causes that acted upon each individual member of the group.  Galton 

adhered to this concept in his study of inheritance, but disagreed on the matter of 

constancy of causes, which he thought to be subject to reversion, or regression 

toward mediocrity, when studied from one generation to another.  He devised a 

coefficient of reversion in order to characterize the relationship between inheritable 

and observable traits (such as anthropological measurements of height, chest width, 

etcetera).  The coefficient was later renamed into coefficient of correlation which is 

still in use today.  The publication of Galton's 'Natural Inheritance' araised the interest 

of Karl Pearson in statistics and their application to biological data.  His life and work 

has been described with affection and detail by his son and successor Egon [1]. 

 

Pearson studied mathematics at Cambridge under the distinguished A. Cayley, 

J.C. Maxwell and G.G. Stokes.  He went to Heidelberg to acquaint himself with 

physics and metaphysics.  He also studied law but never practised it.  During his 

student years he wrote philosophical essays about Spinoza, Maimonides, Luther and 

Marx.  After marriage, he took part in debates about the 'Women's Question'.  

Throughout his later life he advocated 'free thought' in the sense of a religious, but 

undogmatic, knowledge : 'It is human thought which dictates the laws of the 
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universe...  We have to look upon the universe as one vast intellectual process.'  

Pearson had an ebullient character, with great capacity for hard work and with 

extraordinary productivity. 

 

At the age of 27, in 1884, Karl Pearson was appointed professor at University 

College in London where he lectured on applied mathematics and mechanics.  A 

turning point in his career, as we have already mentioned, was his acquaintance with 

the work of Francis Galton.  This opened new and broad avenues for man's 

intellectual exploration of the living world [2] : 'This part of the inquiry may be said to 

run along a road on a high level, that affords wide views in unexpected directions, 

and from which easy descents may be made to totally different goals...'.  Pearson 

reflected on this passage [1]: 'I interpreted that sentence of Galton to mean that there 

was a category broader than causation, namely correlation, of which causation was 

only the limit, and this new conception of correlation brought psychology, 

anthropology, medicine and sociology in large parts into the field of mathematical 

treatment'. 

 

During the period of 1891-1892 Pearson had accepted to lecture 12  times a year at 

Gresham College in London (a sort of Open University).  His lectures covered the 

sciences, the theory of probability and its application to insurance, and statistical 

graphics, which was then called the geometry of statistics.  Pearson made reference 

to the work of William Playfair whom he described as the father of geometrical 

statistics and the founder of the English school of political arithmetic.  In his lectures, 

he emphasized the role of geometry as a fundamental method for investigating and 

analyzing statistical material [3].  He discussed the graphical train schedules (then 

called Bradshaw) devised by the French engineer M. Ibry, and the flow diagrams of 

Charles Minard that have become classics of statistical graphics [4]. 
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During his life time, Pearson contributed to the foundation of statistical theory, 

especially with respect to the biological sciences.  He founded and headed the 

Biometric Laboratory from 1901 to 1906 and edited the prestigious Journal of 

Biometrics.  In 1911, after Galton's death, Karl Pearson was nominated as Galton 

professor of Eugenics.  He founded the department of 'applied statistics', a term 

proposed earlier by Florence Nightingale, and which encompassed eugenics and 

biometrics.  In 1933, Pearson retired and the department was split into Statistics and 

Eugenics, headed respectively by his son Egon Pearson and Ronald Fisher. 

 

7.3.2  The definition of standard deviation 

The contents of the Gresham lectures were published in extended form in  'The 

Grammar of Science'  in which K. Pearson proposed a philosophical and ethical 

foundation of science.  In this book he advocated freedom from dogmatic authority 

and direction from reason [5] : 'Our object in biology is the same as in physics, 

namely to describe the wide range of phenomena in the briefest possible formulae.'  

The Gresham lectures also stimulated Pearson to develop new statistical concepts, 

among which the definition of standard deviation as a measure of spread of 

measurements about their mean.  Galton had defined spread as the probable error, 

by which he meant half of the interval between the  25th  and  75th  percentile of the 

distribution.  In order to make his data independent of location and spread, Galton 

subtracted the median from each number and divided the result by this probable 
error.  Pearson defined in 1893 the standard deviation  sx  of measurements  x  as 

their root mean squared deviation from the mean  x , which reads in modern notation 

[6]: 

 

sx
2 =  

1
n

xi
2 − x ( )

i=1

n
∑

2

     with     x  =  
1
n

xi
i=1

n
∑  

 

where  n  is the number of measurements or observations.  Using a rigorous 
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mathematical approach, Pearson re-examined Galton's anthropological data as well 

as other data that he collected himself.  His first objective was to extract the 

correlation coefficient (or the Galton function, as it was then called) from bivariate 

data such as shown in  Table 7.2.2  and  Fig. 7.2.1 [7]. 

 

7.3.3  The mathematical definition of correlation 

In 1896, Pearson provided a mathematical definition for his correlation coefficient 

which is also known as the product-moment correlation [8]: 

 

rxy =  

1
n

(xi − x )(yi − y )
i=1

n
∑

sx sy
 

 
where  x  ,  y   and  sx , sy  represent the means and standard deviations of the 

measurements  x  and  y , respectively.   
It can be verified that  rxy  varies between  -1  and  +1 .  Perfect correlation results 

when  x  is proportional to  y  (plus or minus a constant).  Perfect anticorrelation 

occurs when  x  is proportional to  -y  (plus or minus a constant).  Because the 

observations  x  and  y  are subject to random errors, the correlation coefficient  r  is 

itself a random variate.  The exact distribution of  r  was derived by Ronald Fisher in 

1915 [9].  This allowed to define upper and lower bounds for an estimated coefficient 

of correlation. 

 

There are several variants of the correlation coefficient.  One may replace the 

original variates  x  and  y  by their rank numbers.  If one computes  r  by the formula 

above on the ranks of  x  and the ranks of  y , this yields the rank order correlation, 

which is also called Spearman's  r.  It seems that Galton already had produced 

correlations of ranks before he had defined his correlation of variates [10] .  So far 
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the coefficient of correlation (or Galton function) has been derived from fitting a 

bivariate normal distribution to the observed data (x  and  y) such as in Fig. 7.2.1 .   

 

George Udny Yule (1871-1951), who was Pearson's student and assistant, pointed 

out in 1897 that the stringent assumption of bivariate normality of  x  and  y  can be 

replaced by the weaker assumption of linear relationship between  x  and  y  [11] .  

The laborious problem of fitting bivariate distributions is thus reduced to the much 

simpler one of fitting a straight line to  x  and  y  by means of the then known method 

of least squares.  (The method of least squares had already been developed in the 

nineteenth century by Laplace, Legendre and Gauss [1].)  Pearson initially objected 

to this idea as the thought that biological phenomena would not be amenable to 

simple linear relationships.  Yule also considered the relationship of one variate with 

several others, and thus laid the foundation for multiple linear regression by means 

of the least squares method.  This brought the biological sciences one more step 

nearer  to the quantitative methods of the physical sciences. 

 

7.3.4  Lines of closest fit to points in space 

Another great contribution of Karl Pearson, which is relevant to the field of statistical 

graphics, is his fitting of lines and planes to a swarm of points in a Cartesian 

coordinate system [12].  Given a data table  X, let's say with  n  rows and  m  

columns, one can represent the row of the table as n points in an m-dimensional 

coordinate space.  In the case when  m  equals  2, this results in a two-dimensional 

Cartesian diagram.  We will restrict our discussion to this case, although the 

conclusions can be extended to any number of dimensions.  Pearson considered the 

problem of drawing a line through the swarm of points such that the sum of squared 

distances from the line would be minimal.  In Fig. 7.3.1, which is from Pearson's 
original publication, the points are labelled  P1 , P2 , ... Pn  and their distances to a 
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line  AB  are identified as p1 , p2 , ... pn .  The least squares criterion to be minimized 

here can be written as : 

 

U =  pi
2

i=1

n
∑   minimum 

 

From his familiarity with mechanics, a subject which he had taught before, Pearson 

knew that the expression  U  is the  moment of inertia about the line  AB .  The line of  

minimal inertia always passes through the centroid of the swarm (i.e., the center of 

mass assuming that all points are endowed with unit mass).  It is also the line for 

which the variance of the projections of the points upon it is maximal.  (This can be 

proven by means of Pythagoras' theorem.)   

 

 

 
Figure  7.3.1  Line  AB  drawn through a swarm of points  P1 , P2 ... Pn , with 
perpendicular distances  p1, p2 ... pn .  The sum of squared distances 
represents the momentum of inertia of the points (assuming that these posses 
unit mass).  The objective is to find a line such that the momentum is minimal 
[12]. 
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Since the distances of the points to the centroid are fixed, minimization of the sum of 

squared distances in the perpendicular direction to the line  AB  automatically 

maximizes the sum of squared distances in the direction of the line.  Pearson 

showed how to compute the parameters of the line which minimizes the moment 

about the line and, hence, maximizes the variance of the projections upon the line.  

He referred to this line as the line of closest fit to the points in the swarm.  Figure 

7.3.2 reproduces Pearson's original illustration in his 1901 paper [12].  The centroid  

C  is defined by the means  x   and  y   of the two variates  x  and  y .  The line of best 

(closest) fit is indicated as  AA' .  The line  BB'  perpendicular to it, is called the line of 

worst fit.  The inertia about  BB'  is maximal and the variance projected upon it is 

minimal.  The two regression lines are labelled  EE'  (y on x) and  FF'  (x on y) for 

comparison.  The regression line of  y  on  x  is used for prediction of  y  when  x  is 

determined without error, while the regression line of  x  on  y  serves to predict  x  

when  y  is given and free of error.  The line of closest fit describes the regression 

between  x  and  y  when both are subject to error [13].  Note that the three 

regression lines on Fig. 7.3.2 also appear on the correlation surface of Galton's 

diagram of parental and filial heights (Fig. 7.2.1). 
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Figure 7.3.2 Line of closest fit  AA'  through a swarm of points in a two-
dimensional coordinate space.  The centroid  C  of the swarm has coordinates 
equal to the means  x   and  y . The line of closest fit possesses minimal 
momentum and accounts for a maximum of the variance of the data. The 
regression lines  EE'  and  FF'  are added for comparison. The line of worst fit is 
perpendicular to the line of best fit.  It accounts for the residual variance in the 
data after accounting for the variance already explained by the line of best fit.  
The concept can be extended to multidimensional data [12]. 

 

 

 

Lines and planes of closest fit can be constructed in higher dimensional spaces.  For 

example, in a three-dimensional space one can determine Pearson's line of best fit 

through the centroid of the points by means of the method of least squares.  This is 

achieved by minimizing the sum of squared distances of the points perpendicularly to 

the line.  Given this line, one can define a plane through the centroid and 

perpendicular to the line of best fit.  The swarm of points can now be projected upon 

this plane.  This way, one obtains a new swarm of points, this time in a two-

dimensional space.  Once again, one can determine the line of best fit in the residual 

space by the same method as outlined above.  The two lines of best fit are by 

construction, perpendicular to each other.  They define a plane of best fit.  What 

remains is the line of worst fit, which is perpendicular to the plane of best fit.  This 
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procedure can be extended to a multi-dimensional space, yielding hyperplanes of 

best fit.  Each successive line of best fit accounts for a lesser amount of the variance 

in the data than its successors.  The iterative process is continued until all the 

variance in the data is exhausted.  This way, one obtains as many lines of best fit as 

there are dimensions in the original swarm of points.  By construction, these lines are 

also the axes of inertia of the points  (if one assumes that they are assigned equal 

masses). 

 

In the case of elliptic or ellipsoidal swarms of points, the axes of inertia, which are 

also the lines of best fit, coincide with the axes of symmetry of the system of points.  

In the more general case the lines of best fit are referred to as the principal axes or 

principal factors of the swarm [14].  With this analysis, Pearson was well ahead of his 

time.  It took several decades before it was realized that the lines and planes of 

closest fit of the 1901 paper correspond with the factors that account for the  

correlations between the variables. The path that led to this insight has been rather 

tortuous as will be explained in the next chapter on factor analysis. 
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Notes on Pearson 
 

 
[1] Egon S. Pearson.  Karl Pearson, An Appreciation of some Aspects of his Life and 
Work.  Cambridge University Press, Cambridge, Engl., 1938. 
 
Churchill Eisenhart.  Karl Pearson, Dictionary of Scientific Biography.  (Charles C. 
Gillispie, Ed.), Vol. 10, Charles Scribner's Sons, New York, 1974, pp. 447-473. 
 
[2]  Francis Galton, Natural Inheritance, MacMillan, London, 1889. 
 
[3] Karl Pearson's emphasis on the role of geometry in statistical analysis of data is 
remarkable.  The geometrical approach was discontinued, however, by Pearson's 
successors (Egon Pearson, Ronald Fisher) in favor of algebraic exposition.  In more 
recent times there is a revival of the geometrical interpretation of statistical concepts, 
especially in the field of multivariate data analysis, which we address in subsequent 
chapters.  It has also become fashionable nowadays to provide the algebraic 
formulation and the geometric representation of statistical concepts side-by-side.  
Pearson contrasted the English school of political arithmetic, with their emphasis in 
statistical charts, against the German school of state science (headed by Achenwall) 
and the French school of probability theory (founded by Laplace). 
 
[4] A beautiful collection of the classic statistical diagrams is found in : 
Edward R. Tufte, The visual Display of quantitative Information.  Opus cit. 
 
[5] Karl Pearson, The Grammar of Science.  J.M. Dent, London, 1937.  First 
published in 1882. 
 
[6] The parameter  s    is now called the variance of  x  .  It is also the second 
moment of the distribution of  x  .  In Pearson’s original notation  defined  s   is 
defined in the form : 

x
2

x
2

 
 sx

2 =  
1
n

S x2( ) −  x 2      with      x  =  
1
n

S x( ) 

 
which is equivalent to: 
 

 sx
2 =  

1
n

xi
2 −  x 2     with      x  =  

1
n

xi
i=1

n
∑

i=1

n
∑  

 
where  S  represents a summation function over all elements of  x  .  The formula is 
algebraically equivalent to the one shown in the main text, but is numerically more 
accurate when data is truncated or rounded to a fixed number of decimals. 
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[7] Karl Pearson, Mathematical contributions to the theory of evolution.  III   
Regression, heredity and panmixia.  Philos. Trans. R. Soc. London, 187A, 253-318, 
1896. 
In this paper, Pearson dealt with data that follow a bivariate normal distribution.  He 
derived the algebraic form of the equidensity ellipse that appeared in Galton's paper 
of 1885 and which is reproduced in Fig. 7.2.1 : 
 

 
x'2

sx
2  +  

y'2

sy
2  −  2rxy

x'  y'

sx sy
 =  c2  

 
where  x'  and  y'  are the deviations from the means of  x  and  y ,  rxy  is the 
coefficient of correlation between  x  and  y  and where  c  is a constant.  Figure 
7.2.2 shows the bivariate normal distribution which is fitted to Galton's stature data, 
using the previously determined means and variances [4] and the coefficient of 
correlation derived by Galton [11].  The drawing has been produced by means of : 
Mathematica, A System for doing Mathematics by Computer.  Wolfram Research 
Inc., Champaign, Ill., 1993. 
 
Pearson noted that this result had already been derived nearly half a century ago by 
A. Bravais, although the latter did not define the coefficient of correlation, which can 
be credited entirely to Galton. 
 
A. Bravais, Analyse mathématique sur les probabilités des erreurs de situation d'un 
point.  Mémoires par divers Savans, Tome IX, Paris, 1846, pp. 255-332 . 
The algebraic form of the elliptic contours was also confirmed in 1886 by 
J.D. Hamilton Dickson upon request by Galton.  The results of A. Bravais were also 
reproduced independently by Francis Y. Edgeworth in 1892 in terms of Galton's 
coefficient of correlation.  For more details on the history of the correlation coefficient 
one must read : Stephen Stigler, The History of Statistics.  Opus cit. 
 
[8] In Pearson's notation this would read as : 
 

 rxy =  

1
n

S xy( )− x y 

sx sy
 

 
where  S  is a summation function which extends over all products between pairs of  
x  and  y , and where  sx  and  sy  are defined as above.  The numerator in the 
expression is the product moment of the bivariate distribution of  x  and  y . 
 
[9] Rodriguez R.N., Correlation.  Encyclopedia of Statistical Sciences, Vol. 2, 
J. Wiley, New York 1982, p. 196 . 
Ronald A. Fisher derived in 1915 the so-called z-transform of the correlation 
coefficient  r , which very rapidly approaches normality with increasing size of the 
sample  n : 
 
 z =  

1
2

log
1+ r
1− r
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The mean of  z  is  1

2
log

1 + ρ
1 − ρ

  , where  r  is the true (or population) mean.  An 

approximate expression for the standard deviation of  z   is  1/(n-3)1/2 . 
 
[10] Rodriguez R.N., Correlation.  Opus cit., p.197 and 199. 
If  x  and  y  are normally distributed, then one may classify  x  or  y  or both into two 
disjoint (dichotomous) categories (e.g., larger than the median or not larger than the 
median).  In this case, the Pearson correlation is referred to as the tetrachoric 
correlation.  When only one of  x  or  y  is made dichotomous, then the Pearson 
correlation is called the biserial correlation. 
 
[11] Some authors still believe that, in order for  r  to be valid, the underlying 
variables  x  and  y  should possess a bivariate normal distribution.  Yule showed, 
however, that it is only required that  x  and  y  are paired, continuous and linearly 
related, e.g., in the form  y = ax + b : 
 
George Udny Yule, On the theory of correlation.  J. Roy. Statist. Soc., 60, 812-854, 
1897.  The question is also discussed at length in : 
Stephen Stigler, The History of Statistics.  Opus cit., pp. 345-354 . 
 
The assumptions of the correlation coefficient have also been discussed by : 
M.D. Nefzger and J. Drasgow,  The needless assumption of normality in Pearson's  r 
.  The Am. Psychol., 12, 623-625, 1957 . 
 
[12]Karl Pearson, On lines and planes of closest fit to systems of points in space.  
Phil. Mag., Series 6, 2, 559-572, 1901. 
The paper is also reprinted in facsimile in : 
Bryant Edwin H. and Atchley William R. (Eds.), Multivariate statistical Methods : 
Within-Groups Covariation.  Dowden, Hutchinson and Ross, Stroudsberg, Penn., 
1975 (Distributed by Holsted Press - J. Wiley), pp. 17-30 . 
 
[13] The regression line of  y  on  x  is obtained by ordinary  least squares regression 
(OLS) which minimizes the distances of the points from the regression line in the 
direction of  y .  In a similar way, the regression line of  x  on  y  follows from 
minimization of the distances of the points from the regression line in the direction of  
x .  In the construction of Pearson's line of best(closest) fit, the distances are 
perpendicular to the regression line, hence the name of orthogonal least squares 
regression.  The principal axes can be obtained from a data table by means of an 
iterative procedure which will be described in greater mathematical detail in the 
chapter on factor analysis. 
 
[14] Each iteration produces a principal axis and is followed by a projection of the 
points upon a (hyper)plane which is perpendicular to this axis.  The projection in 
each iteration reduces the number of dimensions of the system of points by one.  
Iteration stops when no more dimensions are left.  The result consists of as many 
principal axes as there are dimensions in the original swarm of points.  Principal 
axes are mutually perpendicular and are produced in decreasing order of 
importance.  The most important one accounts for the largest part in the variance of 
the data.  The second principal axis explains the largest possible part of the residual 
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variation, in the (hyper)plane which is perpendicular to the first principal axis, etc.  
Principal axes have played an important role in factor analysis.  They have been 
rediscovered thirty years after Karl Pearson's publication by the American factor 
analysts among which Louis Thurstone, who has been one of the prominent 
promoters of multiple factor analysis.  The principal axes are also called principal 
factors or principal components, and form the basis of a popular method of 
exploratory data analysis, which is the subject of the chapters on multivariate data 
analysis. 
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Biographical Notes on Pearson (1857-1936) 
 

 
----  Studies of mathematics at Cambridge under Cayley, Maxwell and 

Stokes. 
 
1884  Appointed professor at University College in London, where he 

lectured on mathematics and mechanics. 
 
1889  Acquaintance with Francis Galton following the publication of 

'Natural Inheritance'. 
 
1892  Presents the public Gresham Lectures in London on the Geometry 

of Statistics. 
 
1892  'The Grammar of Science', a scientific and philosophical testimony. 
 
1893  Definition of the term standard deviation. 
 
1896  Definition of the product-moment correlation coefficient. 
 
1900  Controversy between Mendelians and biometrists after the 

rediscovery of Gregor Mendel's work by H. de Vries. 
 
1901  Founding of the Biometric Laboratory at University College and 

editorship of the Biometrics journal. 
'Lines and planes of closest fit', first ideas on the principal axes or 
principal components of a system of points in space. 

 
1911  Nominated Galton professor of Eugenics.  Founding of the 

department of 'applied statistics', which included eugenics and 
biometrics. 

 
1933  Pearson retires and the department of Applied Statistics is split into 

eugenics (Ronald Fisher) and statistics (Egan Pearson). 
 

 

 

              ____________________________________________ 
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